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AbstmcL Necessary conditions for the existence of compressive solitary-wave solutions of 
a partial differential equation derived by Scott and Stevenson which describes the two-phase 
Ruid Row in a medium compacting under =;lvity x e  derived. It is shown that for compressive 
solitary-wave solutions to exist which satisfy certain boundary conditions it is necessary that 
n = m > I where n and m are the exponents in power laws relating the permeability of the 
medium and the viscosity af the solid matrix, respecnvely, to the voidage. The effect of the 
value of the exponents n and ~1 on the shape of the solitary wave is  investigated by using 
existing analytical solutions and new numerical solutions. 

1. Introduction 

The third-order nonlinear partial differential equation 

-+ a4 - a [ @ . ( l - k  ($ %))I = o  
at az 

was derived by Scott and Stevenson 11, 21 and independently for m = 0 by Richter and 
McKenzie [3] and Barcilon and Richter [4], in order to describe the one-dimensional 
migration of melt through the Earth's mantle. The melt and solid matrix of the mantle 
are modelled as  two immiscible fully connected viscous fluids of constant but different 
densities. In equation (l) ,  4 ( z ,  t )  is the voidage or volume fraction of melt and n and m 
are the exponents in power laws relating the permeability of the medium, K, and the bulk 
and shear viscosities of the solid matrix, e and q ,  to @: 

where KO, $0 and 70 are constants. Scott and Stevenson [1,2] suggest that n lies in the 
physical range 2-5 and that m lies in the physical range 0-1. We will assume that n > 0 
and m > 0. The voidage is normalized by division by the background voidage, @o, the 
variable z is the vertical coordinate measured positive upwards and made dimensionless by 
division by the compaction length, a,, defined by 
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where p is the shear viscosity of the melt, and the variable t is the time made dimensionless 
by division by the characteristic time, to, defined by 
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where g is the acceleration due to gravity and Ap > 0 is the difference between the density 
of the solid matrix and the density of the melt. In the derivation of (1) it is assumed that 
the background voidage $0 <( I .  

Rarefactive solitary-wave solutions of (1) in which 1 < $ < Y, where Y - 1 is the 
amplitude of the solitary wave, have been derived by several authors for a variety of values 
of n and m [ 1-91, It can be shown that for a rarefactive solitary-wave solution to exist it is 
necessary that n > 1 [l, 91. Recently, Nakayama and Mason 1101 derived exact compressive 
solitary-wave solutions of (1). in which 0 < $ < 1, for the cases n = m = 2 and n = m = 2 
by imposing the boundary conditions introduced by Zabusky [ 1 I] and Jeffrey and Kakutani 
[ 121 for the modified Korteweg-de Vries equation. In this communication we wiU derive 
necessary conditions on n and in for compressive solitary-wave solutions of (1) to exist 
subject to the boundary conditions of Zabusky, and Jeffrey and Kakutani. We Will also 
investigate the effect of the value of n and m on the shape of the compressive solitary 
wave. 

1, for the existence 
of compressive solitary waves is derived in section 2. This condition depends only on the 
permeability of the medium. In section 3 the necessary condition, n = m, for the existence 
of compressive solitary waves is derived. This condition depends on the viscosity of the 
solid matrix through the exponent m as well as on the permeability of the medium through 
the exponent n. The effect of the value of n and m on the shape of the compressive 
solitary wave is investigated in section 4 by considering analytical and numerical solutions 
for specific integer and half-integer values of n = m > 1. Finally, concluding remarks are 
made in section 5 .  

2 

An outline of the paper is as follows. The necessary condition, n 

2. Effect of permeability on existence of compressive solitary waves 

We will first derive some general results. We look for a travelling solitary-wave solution 
of (1) of the form 

Q ( z ,  t )  = llrw i- = z - Cf (5) 

where the constant c is the dimensionless speed of the solitary wave. Equation (1) may be 
integrated once with respect to < and using the identity [ I ]  

it may he integrated once with respect to $ to give 

2 ($) =f(*) (7) 
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where 

provided c # 0, and where A and B are constants. The background state is @ = 1. In 
order to obtain the three constants, A ,  6' and c, the following three boundary conditions 
are imposed: 

d f ( I ) = O  
dlL 

From equations (7) and (6) with m = 0, the boundary conditions (9) and (IO) are equivalent 
to the boundary conditions 

(12) 

and they are also used to obtain rarefactive solitary-wave solutions [I]. The boundary 
condition (11) is the condition introduced by Zabuski 1111 and Jeffrey and Kakutani [lZl. 
When the boundary conditions (9) to (11) we imposed on (8) the following three equations 
for A ,  B and c we obtained 

' (x" - C X  - A ) &  
B - /  Xm+m = O  

c + A - l = O  

c = n .  

Thus c = n and therefore for a travelling wave solution to exist it is necessary that n # 0. 
In the following we therefore suppose that n # 0. When n # 0, (8)  becomes 

We now prove that for a compressive solitary-wave solution of (1) satisfying the 
boundary conditions (9)-(11) to exist, it is necessary that n z 1. From (7) it follows 
that solitary-wave solutions exist between the non-negative real mros of f (@)  provided 
that f ($) > 0 between these zeros. Now f ( I )  = 0 and for a compressive solitary wave 
superimposed on the backsound state, @ 6 1 (physically, it is also necessary that $ 2 0 
because voidage cannot become negative). Thus for a compressive solitary-wave solution 
to exist it is necessary that f($) > 0 for @ 4 1 in the neighbourhood of @ = 1. But 
in the graph of f($) against @ the point @ = 1 on the @-axis is a point of inflexion 
with a horizontal tangent because f (1) = 0, f'(1) = 0 and f"(1) = 0, where the dash 
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denotes differentiation with respect to the argument. It is therefore necessary that in the 
neighbourhood of @ = 1 the graph of f(@) against @ be concave up (f"(@) > 0) for 
@ c 1 and concave down (f"(@) c 0) for I// > 1. Thus f"(I//) must be a decreasing 
function of @ in the neighbourhood of @ = 1 and therefore it is necessary that 

d'f - ( l ) < O .  
d@' 

If f"'( 1) = 0 further investigation is required to determine if a compressive solitary-wave 
solution actually exists. If f"(1) z 0, a compressive solitary-wave solution superimposed 
on the background state @ = I and satisfying the boundary conditions (9)-(l I )  does not 
exist. The condition (17) is illustrated in figure 1. Now, it can be verified that 

f"'(1) = -2(n - 1) (1%) 

and therefore for a compressive solitary-wave solution to exist it is necessary that n 2 I .  
Consider the case n = 1 for which f"(1) = 0. When n = 1, (7) and (16) yield 

and therefore 9 = constant, which is not a solitary wave. Hence for a compressive solitary- 
wave solution to exist which satisfies the boundary conditions (9)-(11). it is necessary that 
n > 1. A solution of this kind does not exist if n < 1. 

f"(1)<0 1"'(1)>0 1 r;, ry f(v;i /J 

f(?4 

?(l)=O l"(l)=O 
0 'y 

W)4 r(ry)so 

Fiyrc 1. Rehaviour of f(@) in the neighbourhood of @ = I for f"(1) < 0 and f"'(1) > 0, 

The necessary condition derived in this section depends only on n and is independent 
of m. It therefore depends only on the permeability of the medium and demonstrates the 
important p a t  played in the theory by the power law (2) relating the permeability to the 
voidage. Since a solution does not exist for n = 0 the permeability must depend on the 
voidage for a compressive solitary wave, of the kind considered here, to exist. 

3. Effect of matrix viscosity on existence of compressive solitary waves 

We first show that when a compressive solitary-wave solution exists the range of @ extends 
to @ = 0. We will then obtain the second necessary condition for the existence of a 
compressive solitary-wave solution by considering the behaviour of f(@) as @ + 0. 
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We denote the numerator of the integrand of the integral in (16) by G ( x ) ,  

G ( x )  = x" - n x + n  - 1 .  (20) 

Then 

and 

G(1) = 0 G'(1) = 0 .  (23) 

Now, when n > 1, G"(x)  z 0 for 0 < x 4 1. Thus G(x)  is concave up for 0 < x < 1 
and since also G(1) = 0 and G'(1) = 0 it  follows that G ( x )  > 0 for 0 < x < 1. Thus from 
(16), f($) > 0 for 0 < $ < 1 and the range of the solitary wave extends to $ = 0. 

A solitary-wave solution may be identified by the behaviour of f($) near its zeros [I  31. 
A simple zero will correspond to a crest or a trough while a double zero, or a triple zero 
as in the solution considered here, will give an asymptotic tail to @ near the background 
state. A compressive solitary-wave solution will therefore correspond to a positive solution 
f (e) between the triple zero of f($) at the background state @ = 1 and a simple zero at 
the trough 3 = 0. Thus, for a compressive solitary-wave solution, 

f ($1 = @.F($) (24) 

where F ( $ )  > 0 for 0 < $ c 1. The solution exists as $ + 0 because (7) is a variables 
separable first-order differential equation and the integral 

is convergent as @ + 0. It also follows from the identity (6) with m = 0 that 

= f f ' (0) = f F(0)  > 0 

so that $ ( r )  is indeed a minimum when $ = 0. 
We now therefore consider the behaviour o f f ( $ )  as $ + 0. When (16) is integrated 

there are three special cases which introduce logarithms, namely n + m = 1, n + m = 2 
and m = 1. But since it is necessary that n > 1 and since we assume that m > 0 it follows 
that n + m =- 1. The case n + m = 1 is therefore not considered. Also, since n > 1, the 
cases n + m  = 2 and m = 1 cannot be satisfied simultaneously. Thus by integrating (16) it 
can be verified that 

(1 +O($)+O($n+m-l ) )  if n + m  # 2  and m # 1 (27) 
(1  +O(@lntlr)) if n + m = 2  (28) 
(1 + O(@)) if m = l  (29' 

2(n - 1)$."-"+' 
f(@)= n ( n + m - 1 )  
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as + -+ 0. Thus f (+) has a simple zero at @ = 0 provided n = m, We see also from (26) 
that when n = m > 1, 
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verifying that @ attains a minimum value when + = 0. 
The condition n = m depends on the bulk and shear viscosities of the solid matrix 

through the exponent m as well as on the permeability of the medium through the exponent 
n. This condition must be combined with the condition n > 1 to give the necessary condition 
n = m > 1 for the existence of a compressive solitary-wave solution of the kind considered 
here. Since it is necessary that m > 1, the viscosity of the solid matrix must depend on the 
voidage for the compressive solitary-wave solution to exist. 

4. Solutions for specific values of n. and m 

Finally, we will compare briefly some solutions for compressive solitary waves with 
n = m > 1. When n = m the characteristic length, 6,, defined by (3), which is used 
to make 5 dimensionless, does not depend on n and m. Thus 6, can still be used as the 
characteristic length when comparing solutions with different values of n = m. 

For each value of n = m considered the solution will be reduced to the evaluation 
of an integral. Except for two cases, the integral will be evaluated numerically. The 
IMSL subroutine DQDAGS, which was designed to integrate functions which have endpoint 
singularities, will be used [14]. The performance of the subroutine on functions which are 
well behaved at the end points is also quite good. The subroutine subdivides the interval 
of integration and uses a 21-point Gauss-Kronrod rule to estimate the integral over each 
subinterval. 

Consider first the case in which n and m are positive integers such that 
n = m 2. Then (16) integrates to give 

where R(@) is a polynomial in I) of degree 2n - 1 defined by 

By Descartes' rule of signs [ 151, the equation R(@)  = 0 cannot have more positive roots than 
there are changes of sign from + to - and from - to 4- in the coefficients of R(@).  Thus 
R ( @ )  = 0 cannot have more than three positive roots and since R(1) = R'(1) = R"(1) = 0, 
it has exactly three positive roots which are at @ = 1, in agreement with the boundary 
conditions and the general theory. Thus 

R(@)  = (1 - @ ) 3 P ( @ )  (33) 

where P ( @ )  is a polynomial in @ of degree 2n - 4 which has no positive zeros and 
(d@/d{)* z 0 for 0 c @ < 1. The solitary-wave solution corresponds to the positive 
solution (d@/d<)* between the triple zero at @ = 1 and the simple zero at @ = 0; (d@/d()* 
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is negative and dt,b/dg is therefore imaginary, for t,b z 1 and for t < 0 in the neighbourhood 
of t,b = 0. If we choose 5 = 0 at = 0 then the solution can be written implicitly in the 
form 

where for 

n = m = 2  

n = m = 3  

n = m = 4  

n = m = 5  

(34) 

P ( x )  = 3 (35) 

P ( x )  = f (3x2 + 9x + 8) (36) 

P ( x )  = (37) 

P ( x )  = & ( 5 2  + 15x5 + 30x4 + Sox3 + 5 7 2  + 51x + 32). (38) 

(zX4 + 6x3 + 12x2 + 13x + 19) 

The function t,b is an even function of 5 and therefore symmetric with respect to the trough 
at t,b = 0. When n = m = 2, equation (34) can be integrated to give [IO] 

12 
* = I - -  (39) 

The compressive solitary-wave solution (39) tends algebraically to the background state, 
t) = 1, as -+ 00 which is slower than the limiting behaviour of the rarefactive solitary- 
wave solutions which tend exponentially to the background state [3-5,9]. For n = m ,= 3, 
4 and 5 the integral in (34) was evaluated numerically using the IMSL subroutine DQDAGS. 
Graphs of the analytical solution (39) for n = m = 2 and of the numerical solutions for 
n = m = 3. 4 and 5 are presented in figure 2. The width of the compressive solitary wave 
at half its depth, W ,  is given by 

For n = m = 2,  3, 4 and 5, W = 6.928, 6.947. 7.402 and 7.935, respectively. The width 
therefore increases slowly as n = m increases. However, the shape of the compressive 
solitary wave as n = m ranges from 2 to 5 does not vary greatly which indicates that the 
analytical solution (39) for n = m = 2 is reasonably representative of the other three cases 
for which analytical solutions are not known. 

Consider secondly the case n = m = 1 ( 2 p  + 1) where p > 1 is a positive integer. 
Then integration of (16) gives 

If we let y = t,b'I2 then (41) becomes 

2 ($) = s w  
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-20 -10 0 10 20 
t 

Figure 2. Comparison of compressive solitary-wave solutions: rhc analytical solution (391 for 
n = m = 2 (-) and the numerical solutions for n = m = 3 (- - - . - .I, n = m = 4 
(- - - --) and n = m = 5 (- - -). 

where S(y) is a polynomial in y of degree 4 p  defined by 

By Descartes' rule of signs, S(y)  = 0 cannot have more than three positive roots and since 
S(1) = S'(1) = S"(1) = 0 it has exactly three positive roots which are at y = 1. Thus 

S ( Y )  = (1  - Y ) 3 e ( Y )  (44) 

where Q(y) is a polynomial in y of degree 4p - 3 = 4n - 5 which has no positive zeros. 
Also, by Descarfes' rule of signs, S(y) = 0 cannot have more negative roots than there ax 
changes of sign Erom + to - and from - to 4- in the coefficients of S(-y) [15]. Thus 
S(y) = 0 cannot have more than one negative root and since S ( 0 )  = (2p - I)* z 0 and 
S(-I) = -16p e 0, it follows that it has exactly one negative root, which we denote by 
y = --(YO, and that this negative root satisfies -1 < --(YO e 0. The solitary-wave solution 
corresponds to the positive solution (dy/d<)2 between the triple zero at y = 1 and the 
simple zero at y = --(YO ; (dy/d<)* is negative and dy/d< is therefore imaginary, for y > 1 
and y c -ao, Although @'I* takes negative values in part of this range, the voidage, @, is 
always non-negative. If we choose < = 0 at @'Iz = --(YO, then the solution may be written 
in the implicit form 
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Table 1. The root -w of the polynomial equation Q ( y )  = 0 where Q@) is given by (46)-(49) 
for n = m = f ,  5 ,  I and 4. rrspectively. The magnitude of the local maximum of the solitmy 
wave is + = e;. 

n = m  p -an 4 
1 -0.33’ tO.11’  3 

i 
2 -0.613 t0.376 5 

5 
7 i 3 -0.728 t0.530 

9 4 -0.790 +0.624 

where for 

n = m = l  Q ( Y )  = ( 3 ~ +  1) (46) 
n = m = J  (47) 
r r = m = 1  

Q(y) = &j (7y9 + 21ys + 42y7 + 70y6 + 105~’ 

Q ( y )  = & ( 5 y 5  + 15y4 + 30y3 + 34y2 + 27y + 9) 

2 

(48) 
+ 123y4 + 124~’  + 108yz + 75y + 25) 

n = m = 9  
2 

Q ( y )  = & (9yi3 + 2 7 ~ ’ ~  + 54y” + 90y” + 135y9 + 189y8 + 252y7 (49) 
+ 292y6 + 309y5 + 303y4 + 274y’ + 222y2 + 147y + 49) 

and where, for each value of n = m, -a0 is the negative root and only root of the equation 

Q ( y )  = 0 .  (50) 

The values of -a0 are listed in table 1. The function q1j2 is an even function of r 
and therefore symmetric with respect to the minimum at *‘Iz = -00. The function $I 
is therefore an even function of { and symmetric with respect to the local maximum at * = ai. When n = m = ;, -a0 = -4 and (45) can be integrated to give [IO] 

* =  ( 1-- 9::J. (51) 

Equation (511, like (39), describes a solitary wave which tends algebraically to the 
background state as 151 -+ CO. For n = m = z, and 9, the integral in (45) was 
evaluated numerically using IMSL subroutine DQDAGS. Graphs of the analytical solution 
(51) for II = m = and of the numerical solutions for n = m = $ , $ and 2 2 are presented 
in figure 3. Each solution has two local minima, $ = 0, consistent with (41) and one local 
maximum, fl = E:. The local maximum increases as p increases. However, since we have 
proved that - 1 c --(YO < 0 for all integers p > I ,  the local maximum is always less than 
unity and the solitary wave is always totally compressive for all integers p 1. The width 
of the solitary wave at half its depth, CV, is given by 

5 1  

3 

For n = m = $, $ ,  $ and :, W = 11.309, 13.486, 16.046 and 18.254, 
respectively. The width is greater than when n = m are positive integers and also increases 
more rapidly as n = m increases. 
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-20 -10 0 10 20 
t 

Fiwrc 3. Comparison of compressive solitary-wave solutioos: the analytlical solution (51) far 
n = m = 2  2 (- )and the numerical solutions for n = m = 1 (. . . - - .), n = m = 3 
(- - - - -) and n = m = 5 (-- -). 

5. Concluding remarks 

The values of n and m in the solutions considered here lie in the range to 5 .  For the 
Earth’s mantle, this is close to the suggested physical range, 2 to 5 ,  for the exponent n but 
larger than the suggested range, 0 to 1, for the exponent m [1,2]. 

When n = m > 1 takes on integer values, monotone solitary-wave solutions are 
obtained. When n = m > 1 assumes half-integer values the solitary waves have oscillatory 
structure although they remain completely compressive. Oscillatory solitary-wave solutions 
have been derived for other equations. For example, Kawahara [16] found oscillatory 
solitary-wave solutions, which take both rarefactive and compressive values, for a fifth- 
order generalized Korteweg-de Vries equation. 

We have seen that for compressive solitary-wave solutions of the kind considered here 
to exist, it is necessary that both the permeability of the medium and the viscosity of the 
solid matrix depend on the voidage. 

One of the assumptions made in the derivation of the partial differential equation (1) 
is that the background voidage 40 <( 1. It would be of interest to investigate how the 
results for the existence of compressive solitary-wave solutions depend on 40 when the 
approximation that $0 << 1 is relaxed. 
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